<--Push-->

Устройство батарейки пальчиковой, круглой, кроны, телефона

Разновидности аккумуляторов

Современные аккумуляторные батареи можно условно разделить на обслуживаемые и необслуживаемые.

Можно выделить следующие основные виды:

  • АКБ с жидким электролитом.
  • EFB аккумуляторы.
  • AGM.
  • Гелевые.

EFB

Батареи по технологии EFB появились сравнительно недавно. В них также находится жидкий электролит, но пластины завернуты в микроволокно. Материал впитывает электролит, что увеличивает площадь контакта с пластинами. Это также повышает емкость и мощность и позволяет снизить объем электролита по сравнению с обычными АКБ, делая такие батареи практически необслуживаемыми. Срок службы 4-5 лет. Стоимость приемлемая.

AGM


Устройство аккумулятора AGM Аккумуляторы AGM относятся к классу необслуживаемых батарей. Это значит, что у них полностью герметичный корпус. На корпусе имеются газоотводные клапаны. Между пластинами находится стекловолокно, в порах которого электролит. Это позволяет значительно замедлить процесс сульфатации. Такие батареи не боятся полного разряда. Срок службы до 10 лет. Но есть минусы: высокая стоимость и обслуживание.

Гелевые

Это также необслуживаемые батареи. В электролит добавлены вещества, которые сгущают его и доводят до твердого состояния. Сам электролит выступает в роли сепаратора между пластинами. Срок службы до 10 лет, но требуется специальный уход, как и в случае с AGM. Не боятся глубокого разряда, но чувствительны к перезаряду и замыканию. Стоят в 3-4 раза дороже обычных.

Аккумуляторная батарея – это то устройство, которое требует от водителя внимания. Чтобы батарея прослужила долго, нужно знать ее устройство и принцип работы. При правильном уходе и условиях содержания АКБ проработает долгие годы.

Устройство батарейки

Конструкционные особенности батареек связаны, прежде всего, с их размерами и формой.

Цилиндрической

Цилиндрическая батарейка имеет вытянутый корпус. Оболочка в таких элементах чаще состоит из металла. Эта часть надёжно изолирована от внутренних деталей.

Сразу после диэлектрической оболочки следует тонкий стакан из токопроводящего металла (цинка в солевых батареях). Этот элемент соединяется с отрицательным выводом батарейки.

В середине цилиндрического элемента питания располагается графитовый стрежень, который является положительным выводом. В контактной части на эту деталь надевается металлический колпачок для защиты от механических повреждений.

В пространстве между центральным стержнем и отрицательной оболочкой находится электролит и деполяризующая смесь.

Круглой (миниатюрной)

Кнопочная батарея является незаменимым элементом питания в наручных часах и других миниатюрных электрических устройствах. Срок службы таких батареек, как правило, выше чем у пальчиковых, но причина длительной работы связана, прежде всего, с небольшим электропотреблением устройств, в которые устанавливается данный элемент.

Состоит такая батарейка из положительного и отрицательного полюсов, между которыми находятся вещества, вступающие в химическую реакцию при подключении к источнику тока потребителей.

Разноимённые контакты в таких изделиях надёжно изолированы друг от друга диэлектрическим материалом. Наиболее часто кнопочные батареи производят по воздушно-цинковой технологии.

Крона

Крона отличается от других батареек тем, что внутри элемента находится 6 небольших источников питания по 1,5 Вольт. Принцип работы каждого отдельного изделия не отличается от пальчиковых или кнопочных батарей.

Корпус батарейки «Крона» изготавливается из металла, но также может использоваться прочный пластик. Отдельные элементы располагаются сверху вниз и подключаются последовательно. Положительный и отрицательный выводы находятся на одной из плоскостей, которая изготавливается из диэлектрика.

История батарейки — гальванического элемента

Свое название гальванические элементы получили по имени итальянского врача и анатома Луиджи Гальвани (1737 — 1798). Проводя опыты с лягушками, Гальвани заметил, что свежепрепарированная лягушачья лапка, подвешенная на медном крючке к железному стержню, сокращается, когда к ней прикасались железом. Наблюдения были истолкованы им как проявление «животного электричества».

Объясняя это явление позже итальянский физик Александро Вольта установил, что причиной сокращения мышц служит не «животное электричество», а наличие цепи из разных проводников в жидкости. Сама лягушачья лапка играла роль чувствительного прибора.

Александро Вольта создал первый источник тока («Вольтов столб»), который можно было использовать на практике. Этот источник состоял из медных и цинковых пластин, между которыми были проложены кружочки ткани, пропитанные раствором щелочи.

Александро Вольта предложил разделить все проводники на два рода:

  1. Сухие — металлы и уголь.
  2. Влажные — электролиты(влажные).

Шведский ученый Сванте Аррениус, изучая электропроводимость растворов различных веществ, в 1877 году пришел к выводу, что причиной электропроводимости является наличие в растворе ионов, которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называется электрической диссоциацией. При диссоциации в воде электролиты диссоциируют на положительно и отрицательно заряженные ионы. Под действием электрического поля, положительно заряженные ионы движутся к отрицательному полюсу источника тока (катоду) и называются катионами, а отрицательно заряженные – к положительному полюсу (аноду) и называются анионами. Таким образом электролиты обладают электронной проводимостью.

Примеры гальванических элементов:

Название элемента Отрицательный электрод Положительный электрод Электролит
Вольтов столб Цинк Медь Раствор щелочи
Первый элемент Вольта Цинк Медь Раствор серной кислоты
Элемент Даниэля Цинк Медь Раствор сульфата цинка
Элемент Грине Цинк Угольный стержень Раствор сульфата меди и бихромата калия
Элемент Лекланше Цинковый цилиндр Угольный стержень Раствор нашатыря и оксид марганца
Сухой элемент Цинковый цилиндр Угольный стержень Густой клейстер, приготовленный из муки на растворе нашатыря

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Применение аккумуляторов

Применение аккумуляторов настолько широко, что даже сейчас, изучая данный урок, вы используете аккумуляторы. Они есть в наших телефонах, компьютерах, планшетах.

В большинстве видов транспорта также задействованы аккумуляторы. Двигатель машины не заведется, если аккумулятор под капотом будет разряжен. Аккумуляторы приводят в движение и строительную технику, и сельскохозяйственную, и даже самолеты. Современные электромобили в самой своей основе имеют мощный аккумулятор.

Аккумуляторы играют большую роль в аварийных ситуациях: они могут поддержать работу других электрических приборов достаточное время для устранения неполадок.

Характеристика литий-ионных батарей

Основными характеристиками для любого элемента питания, являются:

  • напряжение;
  • ёмкость;
  • диапазон рабочих температур;
  • саморазряд;
  • срок эксплуатации.

Рабочее напряжение

Главный фактор, влияющий на диапазон рабочего напряжения – это материал, из которого сделаны электроды. В литиевых устройствах минимум этого показателя составляет 2,2-2,5 В, а максимум 4,25-4,35 В.

Ёмкость

Ёмкость элемента питания – это максимальное количество ионов металла, которые способны добраться до отрицательного и положительного электродов. В процессе эксплуатации, анод и катод постепенно теряют способность удерживать прежнее число ионов, и ёмкость батареи уменьшается.
Максимальная ёмкость Li-ion аккумулятора напрямую зависит от типоразмера и может составлять десятки или тысячи мАч. Самые популярные батареи типа 18650, могут иметь ёмкость 1000-3600 мАч, а АКБ 14500, имеющие габариты «пальчиковой» батарейки (АА) – 900 мАч.

Литий-ионные аккумуляторы.

Рабочая температура

Диапазон рабочих температур у литиевых батареек шире, чем у многих других типов устройств, и колеблется от -20°С до +50°С. Максимальную производительность АКБ способен выдавать лишь при комфортной температуре – около +20°С.

При температуре ниже +4°С энергоёмкость работающего АКБ начинает снижаться, а при отрицательных значениях может утратить до 50% и разряжаться прямо на глазах. Для хранения аккумуляторов лучше подойдёт температура – от 0 до +10°С.

Под саморазрядом имеется ввиду уменьшение ёмкости АКБ при бездействии (во время хранения). Для литиевых устройств, этот показатель составляет всего 6-10 % за год.

При условии полного разряда, максимальное количество циклов составляет 500-1000, но, если соблюдать все правила по зарядке и эксплуатации, можно продлить «жизнь» аккумулятора в несколько раз.

Начинка батареек

Солевые

Солевые батарейки наиболее дёшевы, но не держат большую нагрузку, долго не хранятся и имеют свойство «вытекать» при каждом удобном случае.

Упрощённо, солевые батарейки состоят из двух электродов — из цинка и из диоксида марганца. Пространство между электродами заполнено электролитом (его в батарейках называют агломератом), в котором кроме собственно жидкости взвешена сажа и графит — токопроводящие частицы.

Солевые батарейки хранятся максимум 2-3 года, причём падение ёмкости к окончанию срока хранения составляет 30-40 %.

Алкалиновые

Алкалиновые или щелочные батарейки гораздо меньше проседают под высокой нагрузкой, почти не вытекают и практически не подвержены внезапным разогревам при перегрузке.

Химически алкалиновая батарейка состоит ровно из тех же компонентов, но как бы вывернута наизнанку. Агломерат специально загущен, в цинк добавлены висмут и алюминий для увеличения токоотдачи.

Кстати, раньше добавляли вредную ртуть, но все производители давно от неё отказались. До сих пор на многих батарейках можно встретить надпись 0 % Mercury .

Алкалиновая батарейка имеет изоляцию электродов, специальную камеру для газов, а также мембрану. В случае перегрузки и резкого выделения большого количества газов, батарейка не взорвётся, а просто порвётся мембрана. Да, электролит при этом вытечет, но это будет опасно только для устройства, но не для человека.

Принцип работы

На прилавках магазинов представлено множество различных видов батареек. У них есть небольшие различия, но вот работают они все по одной схеме. Если есть старая батарейка, сделайте ее разбор, и вы увидите, какова ее анатомия.

Каждая из них имеет в своем строении несколько элементов, состоящих из:

  • положительного полюса – анода (цинк);
  • отрицательного полюса – катода (марганец);
  • электролита – сухого или жидкого.

Вот эти три компонента батарейки и определяют ее состав.

Принцип работы устройства такой: происходит поступление электрического тока с положительного заряда (анода) на отрицательный (катод)

При этом важно помнить, что необходимо присутствие нагрузки: лампочки, двигателя, диода или какого-либо иного элемента. Отсутствие нагрузки во время соединения «плюса» с «минусом» грозит коротким замыканием

Катоды выступают восстановителем. Они получают электроны от поступившего анода. Электролит представляет собой среду для передвижения ионов, образовавшихся в результате химических реакций.

В процессе эксплуатации аккумуляторов постоянно образуются определенные вещества, аноды же в ходе работы элемента приходят в негодность, разрушаются, окисляются. Таким образом источник питания садится.

Многих интересует вопрос: «А возможно ли его заряжать?» Все, что происходит в батарейках – необратимо. Поэтому гальванические элементы не заряжаются. Но с помощью достижений науки есть возможность возвратить изначальное состояние элементам. Для этого необходимо пропустить электрический ток в противоположную сторону, то есть от катода к аноду. Такие источники питания получили название аккумулятора, а сам процесс мы видим на примере обычной зарядки.

Но вот традиционные устройства с помощью этой рецептуры зарядить нельзя. Они не подходят для повторного использования, так как это чревато взрывом или течью химических элементов из корпуса.

Применение

Различные виды могут применяться по-разному, зависит это от их основных конструктивных свойств и характеристик:

  • Элементы питания с твердым электролитом используют в устройствах с малым значением потребляемого тока. Например, часы фонарики с малой мощностью, а также пульты дистанционного управления.
  • Щелочные батарейки применяют в электротехнике с повышенным значением тока, к ним можно отнести различные камеры и магнитофоны, а также игрушки с электродвигателем.
  • Источники питания с серебряными электродами способны обеспечить электроэнергией в калькуляторах, переносных инструментах и аппаратах для улучшения слуха.
  • Литиевые батарейки используют в портативной электронике, где необходимо стабильное значение емкости и потребляемого тока.

Гальванический элемент

Одним из самых распространенных источников тока является гальванический элемент. Его же мы и будем использовать в различных опытах. Поэтому мы рассмотрим его более подробно.

Что такое гальванический элемент простыми словами? Это всем нам хорошо известная батарейка.

Заглянем внутрь нее (рисунок 7), чтобы разобраться, как она работает.

Рисунок 7. Гальванический элемент

Этот элемент в своей основе (рисунок 7, б) представляет собой цинковый корпус 2, внутри которого находится угольный стержень 3. На верхнем конце этого стержня находится металлическая крышка 1.

Стержень окружен смесью 4 оксида марганца (IV) $MnO_2$ и измельченного углерода $C$. Между этой смесью и самим корпусом находится желеобразный раствор соли 5 (хлорида аммония $NH_4Cl$).

В чем же суть? Дело в том, что цинк $Zn$, из которого состоит корпус, взаимодействует с хлоридом аммония $NH_4Cl$. Идет химическая реакция. Цинковый сосуд приобретает отрицательный заряд.

А вот оксид марганца имеет положительный заряд. Угольный стержень передает его на металлическую крышку.

Итак, мы имеем отрицательно заряженный корпус и положительно заряженный стержень. Они будут называться электродами. Между ними возникает электрическое поле.

Само понятие электрода синонимично с понятием полюса. «Электрод» больше используется в описании электрических явлений и приборов, а «полюс» чаще применяют, когда говорят о магнитах.

Соединим эти два электрода проводником. По нему потечет электрический ток. Так энергия химических реакций превращается в электрическую.

{"questions":,"answer":}}}]}

Меры безопасности

В зарядное устройство можно устанавливать только перезаряжаемые аккумуляторы. Установка в ЗУ гальванических элементов запрещена, т.к. приводит к протеканию электролита из батарейки и поломке зарядного устройства. В случае попадания электролита на кожу нужно незамедлительно промыть этот участок тела проточной водой. Химические элементы тока необходимо хранить вне доступа детей, а вышедшие из строя элементы – сдавать на утилизацию в специализированные компании, чтобы избежать загрязнения окружающей среды.

Наша предыдущая статья посвящена балансирам для LiFePO4 аккумуляторов.

Параметры и характеристики аккумуляторной батареи

Параметры и характеристики аккумуляторов зашифрованы в их маркировке и сейчас мы разберём, что она обозначает.

Этот вопрос мы рассмотрим на примере самой распространённой АКБ 6СТ-55.

Итак, в названии аккумулятора, цифра 6 обозначает, что АКБ состоит из 6-и банок.

  • СТ – обозначает что батарея стартерная.
  • 55 – обозначает ёмкость батареи, которая составляет 55 Ампер*час.

Для того что бы понимать какой аккумулятор вам нужен, необходимо знать два параметра:

  • Тип ДВС;
  • Объём двигателя вашей машины;

Далее рассмотрим для каких двигателей, какие аккумуляторы подходят. Это таблица для бензиновых моторов:

  • Двигатели объёмом до 1,6 литра. Для них подходят АКБ 6СТ-45;
  • Двигатели объёмом от 1,6 до 2,5 литров. Для них подходит 6СТ-55;
  • Двигатели объёмом от 2,5 до 3 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 3 до 3,5 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом более 3,5 литров. Для них подходит 6СТ-90.

Для дизельных силовых агрегатов эти параметры несколько иные:

  • Двигатели объёмом до 1,5 литра. Для них подходит 6СТ-55;
  • Двигатели объёмом от 1,5 до 2,0 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 2-х до 2,7 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом от 2,7 до 3,5 литров. Для них подходит 6СТ-90;
  • Двигатели объёмом от 3,5 до 6,5 литров. Для них подходит 6СТ-132;
  • Двигатели объёмом более 6,5 литров. Для них подходит 6СТ-192 и больше.

Как можно увидеть, из-за разных принципов работы дизельных и бензиновых двигателей для них используются аккумуляторы разной ёмкости.

Для дизельных силовых агрегатов вам потребуются более ёмкие батареи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Как работает аккумулятор

Принцип преобразования химической энергии в интересующую нас электрическую поясняет картинка.


Между двумя рядом расположенными веществами с подобранными свойствами протекает окислительно-восстановительная химическая реакция. Она сопровождается выделением электронов и ионов, которые при движении, как известно, образуют электрический ток.

Чтобы движущиеся заряды создавали электрические потенциалы, а не просто выделяли тепло в окружающую среду при смешивании окислителя с восстановителем, необходимо создать для этого условия.

Этим целям служат:

  • анод (положительный заряд), осуществляющий окислительную реакцию;
  • катод, восстанавливающий вещество;
  • электролит, проводящий ток во время диссоциации рабочей среды на катионы и анионы.

Анод с катодом размещают в отдалённых сосудах, которые соединяются солевым мостиком. По нему движутся анионы и катионы, создавая внутреннюю цепь аккумулятора. Внешняя же цепочка образуется подключением потребителя ко входу, например, вольтметра или другой нагрузки.

На аноде и катоде постоянно происходит переход электронов и ионов в электролит и обратно. Во внутренней цепочке идет движение зарядов через солевой мостик, а во внешней протекает ток с анода к катоду.

Этот принцип является базовым для заряда и разряда всех моделей химических источников тока.

Как работает никель кадмиевый аккумулятор

Существует всего два вида работы:

  1. разряд;
  2. заряд.

Можно выделить еще режим хранения, но правильнее его отнести к разряду, который стараются максимально ограничить, хотя полностью избежать его не получается.

Цикл разряда

Накопленная на электродах энергия при подключении к ним нагрузки создает электрический ток во внешней цепи.


Анодом в никель-кадмиевом аккумуляторе работают окислы никеля с включениями частичек графита, снижающими общее электрическое сопротивление. В качестве катода используют губчатый кадмий.

Во время разряда происходит выделение молекул активного кислорода из состава окислов никеля, которые поступают в электролит и дальше на кадмий, окисляя его.

Его принято проводить при снятой нагрузке. Тогда можно использовать меньшую мощность зарядного устройства.

Полярность клемм у зарядного и аккумулятора должно совпадать, а внешняя мощность превосходить внутреннюю. Тогда под действием постороннего источника внутри аккумуляторной банки формируется ток с направлением, обратным разряду.

Он переориентирует ход химических процессов в емкости банки, обогащает анод кислородом и восстанавливает кадмий на катоде.

Как работает литий-ионный аккумулятор

Углеродный анод и катод из оксидов металла, содержащих литий, например, состава LiMn2O4, погружены в органический электролит.


В нем движутся положительно заряженные ионы Li+. Сам литий при этом не переходит в металлическое состояние, а создается обмен его ионов между электродными пластинами. По этой причине аккумуляторы называют литий-ионными.

Цикл разряда

Перемещение ионов идет в обратном заряду направлении, а электроны от анода движутся к катоду и образуют электрический ток.

Если сравнить принципы работы аккумулятора любой конструкции, то можно наблюдать общую закономерность перемещения ионов между электродами по внутренней цепи и электронов по внешней при создании схем заряда и разряда.

Эксплуатационные характеристики аккумулятора

Рабочее напряжение

Его величину определяют на разомкнутых клеммах вольтметром при оптимальном заряде. В процессе работы оно постепенно снижается.

Емкость АКБ

Характеристика, показывающая количество тока в миллиамперах или амперах, которое способен выдать аккумулятор за промежуток времени, выраженный в часах.

Правила использования и утилизации

Батарейки нежелательно применять при крайних температурах — сильно охлаждать или нагревать. Это может привести к весьма неприятным последствиям. Если вам пришлось использовать батарейки в холоде, например, зимой на улице, рекомендуется не менее получаса выдержать их в комнатной температуре.

Случается, что батарейки, особенно щелочные, текут. Такое происходит когда нарушается герметичность корпуса батарейки. Использовать эти батарейки ни в коем случае нельзя — это может привести к повреждениям электроприборов.

Что касается утилизации отработанных батареек или аккумуляторов, то этим должны заниматься специальные организации или предприятия. В крупных городах можно найти специально организованные приёмные пункты, куда можно сдать использованные батарейки для их дальнейшей утилизации. Правда, не в каждом городе такой пункт приёма организован. Вопрос, что делать в этом случае остаётся открытым.

Положительные и отрицательные свойства солевых батареек

Любая вещь в нашей жизни имеет свои положительные и отрицательные стороны. Уж так устроен этот мир. Ничем не отличается от остальных и солевая батарейка. Из её положительных качеств можно выделить то, что она небольшая по размеру и не много весит. Это очень удобно. А если давать иногда ей полежать без работы, то она сможет прослужить немного дольше.

Взбодрить «уставшую» батарейку можно энергично встряхнув или ударив об руку. От этого внутри неё выравниваются слипшиеся комки электролита и она ещё некоторое время успешно будет функционировать.

А вот отрицательных свойств у них больше:

  • хранятся недолго (обычно срок их годности не превышает трёх лет);
  • имеют склонность к самостоятельной потере заряда;
  • электролит часто пересыхает;
  • плохо переносят температурные перепады;
  • от длительного хранения их корпус окисляется, и электролит вытекает — поэтому рекомендуется извлекать их из устройства, если им не пользуются;
  • у них небольшая энергетическая ёмкость.

Литиевая батарейка

Литий-марганцевая диоксид батарейка -это относительно недавняя разработка, использующая преимущества высокого электродного потенциала и плотности энергии металлического лития. Она предлагает значительно большую плотность энергии и емкость, чем “щелочная” и угольная, при относительно небольшом увеличении стоимости.

Литий находится в форме очень тонкой фольги и запрессован внутри банки из нержавеющей стали, чтобы сформировать отрицательный электрод.

Положительный электрод – диоксид марганца, смешанный с углеродом для улучшения его проводимости, а электролит-перхлорат лития растворен в пропиленкарбонате.

Номинальное напряжение на клеммах литиевого элемента составляет 3,0 в, что в два раза больше, чем у “щелочных” и других гальванических элементов. Он также имеет очень низкую скорость саморазряда, что дает ему очень длительный срок хранения. Внутреннее сопротивление также довольно низкое и остается таким в течение всего срока службы.

Литиевая батарея хорошо работает при низких температурах, даже ниже -60 °C, и передовые разработки используют их в спутниках связи, космических аппаратах, военных и медицинских приложениях. Медицинские приложения, требующие длительного срока службы критически важных устройств, таких как искусственные кардиостимуляторы и другие имплантируемые электронные медицинские устройства, используют специализированные литий-ионные батареи, которые могут работать в течение многих лет.

Литиевые гальванические элементы батарейки подходят для менее важных применений для работы с игрушками, часами и камерами. Хотя литиевые батареи стоят дороже, они обеспечивают более длительный срок службы, чем “щелочные” батареи, и сводят к минимуму их замену.

На практике, однако, напряжение на клеммах уменьшается по мере уменьшения заряда. Именно по этой причине, в отличие от вторичных батарей, первичные, как правило, не получают спецификации емкости ни в ампер-часах, ни в миллиампер-часах от большинства производителей вместо этого обычно задается только максимальный ток разряда.
Литиевые гальванические элементы обладают значительно большей плотностью энергии и емкостью, чем “щелочные” и другие первичные батареи; они обеспечивают более высокое (примерно в два раза) напряжение на клеммах по сравнению с другими первичными элементами, и напряжение на клеммах остается почти постоянным в течение всего срока службы.

Способ третий: медные монеты

Ингредиентами для изготовления такой батарейки своими руками являются:

  • медные монеты;
  • алюминиевая фольга;
  • плотный картон;
  • столовый уксус;
  • провода.

Нетрудно догадаться, что электроды будут медные и алюминиевые, а в качестве электролита используется водный раствор уксусной кислоты.

Монеты для начала нужно очистить от окислов. Для этого их потребуется ненадолго опустить в уксус. Затем изготавливаем кружочки из картона и фольги по размеру монет, используя одну из них в качестве шаблона. Вырезаем кружки ножницами, картонные кладем на некоторое время в уксус: они должны пропитаться электролитом.

Затем из ингредиентов выкладываем столбик: сначала монету, затем – картонный кружок, кружок из фольги, снова монету и так далее, пока материал не иссякнет. Конечным элементом снова должна стать медная монета. К крайним монеткам можно заранее припаять провода. Если паять не хочется, то проводки прикладываются к ним, и вся конструкция плотно оборачивается скотчем.

В процессе работы этой батарейки, собранной своими руками, монеты придут в полную негодность, так что не стоит использовать нумизматический материал, представляющий культурную и материальную ценность.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Digital discount
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: